Backpropagation v4

Consider a feed-forward network with an input layer, a hidden layer, and an output layer:

input	hidden layer				outer layer			
X	$\rightarrow V \rightarrow$	ŷ	$\rightarrow g \rightarrow$	У	$\rightarrow W \rightarrow$	â	$\rightarrow g \rightarrow$	Z
$x_0 \equiv 1$				$y_0 \equiv 1$	··· artifici	al var	iables for bi	ases
x_1		\hat{y}_1	$\rightarrow g \rightarrow$	y_1		\hat{z}_1	$\rightarrow g \rightarrow$	z_1
x_2	\rightarrow \rightarrow	\hat{y}_2	$\rightarrow g \rightarrow$	y_2	\rightarrow \rightarrow	\hat{z}_2	$\rightarrow g \rightarrow$	z_2
	$\rightarrow V \rightarrow$	•			$\rightarrow W \rightarrow$	•		
•	\rightarrow \rightarrow	•		•	\rightarrow \rightarrow	•		
x_m		\hat{y}_n	$\rightarrow g \rightarrow$	y_n		\hat{z}_p	$\rightarrow g \rightarrow$	z_p

where g is a "sigmoid" function and

$$\hat{y}_j = v_{j0} + v_{j1}x_1 + v_{j2}x_2 + \dots + v_{jm}x_m$$
 for $j = 1, \dots, n$
 $\hat{z}_i = w_{i0} + w_{i1}y_1 + w_{i2}y_2 + \dots + w_{in}y_n$ for $i = 1, \dots, p$

In matrix notation, this can be written $\hat{\mathbf{y}} = V \cdot \begin{pmatrix} 1 \\ \mathbf{x} \end{pmatrix}$ and $\hat{\mathbf{z}} = W \cdot \begin{pmatrix} 1 \\ \mathbf{y} \end{pmatrix}$, where \mathbf{x} is a *m*-vector, \mathbf{y} , $\hat{\mathbf{y}}$ are *n*-vectors, \mathbf{z} , $\hat{\mathbf{z}}$ are *p*-vectors, *V* is an $n \times (m+1)$ matrix of weights, and *W* is a $p \times (n+1)$ matrix of weights.

We apply an input \mathbf{x} to the network, yielding an output \mathbf{z} . Then the error is

$$E = \frac{1}{2} \left((z_1 - t_1)^2 + (z_2 - t_2)^2 + \dots + (z_p - t_p)^2 \right)$$

where t_i is the desired output for the given input **x**. The goal is to minimize the error *E*, by gradient descent. We compute the following partial derivatives, by repeated use of the chain rule:

(a)
$$\delta_i \equiv \frac{\partial E}{\partial \hat{z}_i} = \frac{\partial E}{\partial z_i} \cdot \frac{\partial z_i}{\partial \hat{z}_i} = (z_i - t_i) \cdot g'(\hat{z}_i)$$
 for $i = 1, 2, \dots, p$
(b) $\gamma_j \equiv \frac{\partial E}{\partial \hat{y}_j} = \frac{\partial E}{\partial y_j} \cdot \frac{\partial y_j}{\partial \hat{y}_j} = (\delta_1 w_{1j} + \delta_2 w_{2j} + \dots + \delta_p w_{pj}) \cdot g'(\hat{y}_j)$ for $j = 1, 2, \dots, n$
(c) $\frac{\partial E}{\partial w_{ij}} = \delta_i y_j$ for $\begin{cases} i = 1, 2, 3, \dots, p\\ j = 0, 1, 2, \dots, n \end{cases}$ (d) $\frac{\partial E}{\partial v_{jk}} = \gamma_j x_k$ for $\begin{cases} j = 1, 2, 3, \dots, n\\ k = 0, 1, 2, \dots, m \end{cases}$

The derivative of the sigmoid function $s = g(\hat{s})$ can be written in terms of the output *s*, so we never need the \hat{y} , \hat{z} variables. Example: if $g(\hat{s}) = 1/(1 + e^{-\hat{s}})$ (output in range $0 \le s \le 1$), then $g'(\hat{s}) = s(1 - s)$. If $g(\hat{s}) = \tanh \hat{s} = 2/(1 + e^{-2\hat{s}}) - 1$ (output in range $-1 \le s \le 1$) then $g'(\hat{s}) = 1 - s^2$. The smoothed ReLU fcn, $s = g(\hat{s}) = [\log(1 + e^{\alpha\hat{s}})]/\alpha$, has derivative $g'(\hat{s}) = 1 - e^{-\alpha s}$, where α sets the sharpness of the corner.

The formula (c) means, for example, that a small change Δw_{ij} to a weight w_{ij} will change E by $\Delta w_{ij} \cdot (\partial E/\partial w_{ij}) = \Delta w_{ij} \delta_i y_j = \Delta w_{ij} (z_i - t_i) g'(\hat{z}_i) y_j$. If these small changes were applied at once, then E would change by $\sum_{ij} \Delta w_{ij} \delta_i y_j$, as long as the sum of squares of the Δw 's are small enough. For a fixed sum of squares, the biggest reduction to E can be had by setting $\Delta w_{ij} = -\eta \cdot \partial E/\partial w_{ij} = -\eta \cdot \delta_i y_j$ for a suitable scalar η (called "learning rate"). Similar updates to V are induced by formula (d).

For a single layer network (e.g. Perceptrons), pretend that the y's are the inputs, and consider only the $W = (w_{ii})$ weights and their corresponding updates induced by (a) and (c).

We then use the following overall method: Given samples $\mathbf{x}^{(1)}, \ldots, \mathbf{x}^{(N)}$ each with a desired output $\mathbf{t}^{(1)}, \ldots, \mathbf{t}^{(N)}$, we go through the following loop (η is called the "learning rate"):

For l = 1, 2, ..., N do

• Let $\mathbf{x}^{(l)}$ be applied as the input \mathbf{x} to the network with \mathbf{t} as the corresponding desired output.

- Compute the outputs from all the nodes, y, z, and all the partial derivatives above.
- Apply the corrections (c): $w_{ij} \leftarrow w_{ij} \eta \cdot \partial E / \partial w_{ij}$ and (d) $v_{jk} \leftarrow v_{jk} \eta \cdot \partial E / \partial v_{jk}$, for all i, j, k. End.

One round through the entire loop for all *l* constitutes one "Epoch."