Consider a feed-forward network with an input layer, a hidden layer, and an output layer:

input	hidden layer					outer layer		
\mathbf{x}	$\rightarrow V \rightarrow$	$\hat{\mathbf{y}}$	$\rightarrow g \rightarrow$	y	$\rightarrow W \rightarrow$	$\hat{\mathbf{z}}$	$\rightarrow g \rightarrow$	z
$x_{0} \equiv 1$		\ldots		$y_{0} \equiv 1$	\cdots artificial variables for biases			
x_{1}		\hat{y}_{1}	$\rightarrow g \rightarrow$	y_{1}		\hat{z}_{1}	$\rightarrow g \rightarrow$	z_{1}
x_{2}	$\rightarrow \quad \rightarrow$	\hat{y}_{2}	$\rightarrow g \rightarrow$	y_{2}	$\rightarrow \quad \rightarrow$	\hat{z}_{2}	$\rightarrow g \rightarrow$	z_{2}
.	$\rightarrow V \rightarrow$				$\rightarrow W \rightarrow$			
.	$\rightarrow \quad \rightarrow$				$\rightarrow \quad \rightarrow$.		
x_{m}		\hat{y}_{n}	$\rightarrow g \rightarrow$	y_{n}		\hat{z}_{p}	$\rightarrow g \rightarrow$	z_{p}

where g is a "sigmoid" function and

$$
\begin{array}{lll}
\hat{y}_{j}=v_{j 0}+v_{j 1} x_{1}+v_{j 2} x_{2}+\cdots+v_{j m} x_{m} & \text { for } & j=1, \cdots, n \\
\hat{z}_{i}=w_{i 0}+w_{i 1} y_{1}+w_{i 2} y_{2}+\cdots+w_{i n} y_{n} & \text { for } & i=1, \cdots, p
\end{array}
$$

In matrix notation, this can be written $\hat{\mathbf{y}}=V \cdot\binom{1}{\mathbf{x}}$ and $\hat{\mathbf{z}}=W \cdot\binom{1}{\mathbf{y}}$, where \mathbf{x} is a m-vector, $\mathbf{y}, \hat{\mathbf{y}}$ are n-vectors, $\mathbf{z}, \hat{\mathbf{z}}$ are p-vectors, V is an $n \times(m+1)$ matrix of weights, and W is a $p \times(n+1)$ matrix of weights.

We apply an input \mathbf{x} to the network, yielding an output \mathbf{z}. Then the error is

$$
E=\frac{1}{2}\left(\left(z_{1}-t_{1}\right)^{2}+\left(z_{2}-t_{2}\right)^{2}+\cdots+\left(z_{p}-t_{p}\right)^{2}\right)
$$

where t_{i} is the desired output for the given input \mathbf{x}. The goal is to minimize the error E, by gradient descent. We compute the following partial derivatives, by repeated use of the chain rule:
(a) $\delta_{i} \equiv \frac{\partial E}{\partial \hat{z}_{i}}=\frac{\partial E}{\partial z_{i}} \cdot \frac{\partial z_{i}}{\partial \hat{z}_{i}}=\left(z_{i}-t_{i}\right) \cdot g^{\prime}\left(\hat{z}_{i}\right)$ for $i=1,2, \cdots, p$
(b) $\gamma_{j} \equiv \frac{\partial E}{\partial \hat{y}_{j}}=\frac{\partial E}{\partial y_{j}} \cdot \frac{\partial y_{j}}{\partial \hat{y}_{j}}=\left(\delta_{1} w_{1 j}+\delta_{2} w_{2 j}+\cdots+\delta_{p} w_{p j}\right) \cdot g^{\prime}\left(\hat{y}_{j}\right) \quad$ for $j=1,2, \cdots, n$
(c) $\frac{\partial E}{\partial w_{i j}}=\delta_{i} y_{j} \quad$ for $\left\{\begin{array}{l}i=1,2,3, \cdots, p \\ j=0,1,2, \cdots, n\end{array}\right.$
(d) $\frac{\partial E}{\partial v_{j k}}=\gamma_{j} x_{k}$
for $\left\{\begin{array}{l}j=1,2,3, \cdots, n \\ k=0,1,2, \cdots, m\end{array}\right.$
The derivative of the sigmoid function $s=g(\hat{s})$ can be written in terms of the output s, so we never need the \hat{y}, \hat{z} variables. Example: if $g(\hat{s})=1 /\left(1+e^{-\hat{s}}\right)$ (output in range $0<s<1$), then $g^{\prime}(\hat{s})=s(1-s)$. If $g(\hat{s})=\tanh \hat{s}=2 /\left(1+e^{-2 \hat{s}}\right)-1$ (output in range $\left.-1<s<1\right)$ then $g^{\prime}(\hat{s})=1-s^{2}$. The smoothed ReLU fcn, $s=g(\hat{s})=\left[\log \left(1+e^{\alpha \hat{s}}\right)\right] / \alpha$, has derivative $g^{\prime}(\hat{s})=1-e^{-\alpha s}$, where α sets the sharpness of the corner.

The formula (c) means, for example, that a small change $\Delta w_{i j}$ to a weight $w_{i j}$ will change E by $\Delta w_{i j} \cdot\left(\partial E / \partial w_{i j}\right)=\Delta w_{i j} \delta_{i} y_{j}=\Delta w_{i j}\left(z_{i}-t_{i}\right) g^{\prime}\left(\hat{z}_{i}\right) y_{j}$. If these small changes were applied at once, then E would change by $\sum_{i j} \Delta w_{i j} \delta_{i} y_{j}$, as long as the sum of squares of the Δw 's are small enough. For a fixed sum of squares, the biggest reduction to E can be had by setting $\Delta w_{i j}=-\eta \cdot \partial E / \partial w_{i j}=-\eta \cdot \delta_{i} y_{j}$ for a suitable scalar η (called "learning rate"). Similar updates to V are induced by formula (d).

For a single layer network (e.g. Perceptrons), pretend that the y 's are the inputs, and consider only the $W=\left(w_{i j}\right)$ weights and their corresponding updates induced by (a) and (c).

We then use the following overall method: Given samples $\mathbf{x}^{(1)}, \ldots, \mathbf{x}^{(N)}$ each with a desired output $\mathbf{t}^{(1)}, \ldots, \mathbf{t}^{(N)}$, we go through the following loop (η is called the "learning rate"):

For $l=1,2, \ldots, N$ do

- Let $\mathbf{x}^{(l)}$ be applied as the input \mathbf{x} to the network with \mathbf{t} as the corresponding desired output.
- Compute the outputs from all the nodes, \mathbf{y}, \mathbf{z}, and all the partial derivatives above.
- Apply the corrections (c): $w_{i j} \leftarrow w_{i j}-\eta \cdot \partial E / \partial w_{i j}$ and (d) $v_{j k} \leftarrow v_{j k}-\eta \cdot \partial E / \partial v_{j k}$, for all i, j, k. End.

One round through the entire loop for all l constitutes one "Epoch."

