
CSci 5521 Backpropagation v4 Fall 2018

Consider a feed-forward network with an input layer, a hidden layer, and an output layer:

input hidden layer outer layer

x → V → ŷ → g → y → W → ẑ → g → z

x0 ≡ 1 . . . y0 ≡ 1 . . . artificial variables for biases

x1 ŷ1 → g → y1 ẑ1 → g → z1

x2 → → ŷ2 → g → y2 → → ẑ2 → g → z2

. → V → . . → W → . .

. → → . . → → . .

xm ŷn → g → yn ẑ p → g → z p

where g is a "sigmoid" function and

ŷ j = v j0 + v j1 x1 + v j2 x2 + . . . + v jm xm

ẑi = wi0 + wi1 y1 + wi2 y2 + . . . + win yn

for

for

j = 1, . . . , n

i = 1, . . . , p

In matrix notation, this can be written ŷ = V ⋅ 

1

x




and ẑ = W ⋅ 

1

y



, where x is a m-vector, y, ŷ are n-vec-

tors, z, ẑ are p-vectors, V is an n × (m + 1) matrix of weights, and W is a p × (n + 1) matrix of weights.

We apply an input x to the network, yielding an output z. Then the error is

E = 1
2



(z1 − t1)2 + (z2 − t2)2 + . . . + (z p − t p)2



where ti is the desired output for the given input x. The goal is to minimize the error E, by gradient

descent. We compute the following partial derivatives, by repeated use of the chain rule:

(a) δ i ≡
∂E

∂ẑi

=
∂E

∂zi

⋅
∂zi

∂ẑi

= (zi − ti) ⋅ g’(ẑi)

(b) γ j ≡
∂E

∂ ŷ j

=
∂E

∂y j

⋅
∂y j

∂ ŷ j

= (δ1w1 j + δ2w2 j + . . . + δ pw pj) ⋅ g’( ŷ j)

(c)
∂E

∂wij

= δ i y j for




i = 1, 2, 3, . . . , p

j = 0, 1, 2, . . . , n

for i = 1, 2, . . . , p

for j = 1, 2, . . . , n

(d)
∂E

∂v jk

= γ j xk for




j = 1, 2, 3, . . . , n

k = 0, 1, 2, . . . , m

The derivative of the sigmoid function s = g(ŝ) can be written in terms of the output s, so we nev er need

the ŷ, ẑ variables. Example: if g(ŝ) = 1 / (1 + e−ŝ) (output in range 0 < s < 1), then g’(ŝ) = s(1 − s). If

g(ŝ) = tanh ŝ = 2 / (1 + e−2ŝ) − 1 (output in range −1 < s < 1) then g’(ŝ) = 1 − s2. The smoothed ReLU

fcn, s = g(ŝ) = [log(1 + eα ŝ)] /α , has derivative g’(ŝ) = 1 − e−α s, where α sets the sharpness of the corner.

The formula (c) means, for example, that a small change ∆wij to a weight wij will change E by

∆wij ⋅ (∂E/∂wij) = ∆wijδ i y j = ∆wij(zi − ti)g’(ẑi)y j . If these small changes were applied at once, then E

would change by Σij ∆wijδ i y j , as long as the sum of squares of the ∆w’s are small enough. For a fixed

sum of squares, the biggest reduction to E can be had by setting ∆wij = −η ⋅ ∂E/∂wij = −η ⋅ δ i y j for a

suitable scalar η (called "learning rate"). Similar updates to V are induced by formula (d).

For a single layer network (e.g. Perceptrons), pretend that the y’s are the inputs, and consider only

the W = (wij) weights and their corresponding updates induced by (a) and (c).

We then use the following overall method: Given samples x(1), . . . , x(N ) each with a desired output

t(1), . . . , t(N ), we go through the following loop (η is called the ‘‘learning rate’’):

For l = 1, 2, . . . , N do

• Let x(l) be applied as the input x to the network with t as the corresponding desired output.

• Compute the outputs from all the nodes, y, z, and all the partial derivatives above.

• Apply the corrections (c): wij ← wij − η ⋅ ∂E/∂wij and (d) v jk ← v jk − η ⋅ ∂E/∂v jk , for all i, j, k.

End.

One round through the entire loop for all l constitutes one "Epoch."


